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Introduction

• Biomass burning smoke has numerous 
detrimental environmental and ecological 
impacts

• Respiratory and cardiovascular illnesses
• Radiation budget
• Nutrient availability

• Impacts realized both near source and 
potentially thousands of kilometers 
downwind depending on

• Fire duration
• Amount and type of biomass burned
• Meteorological and fuel conditions
• Vertical distribution in the atmosphere Spatial distribution of MODIS fire occurrence and NOAA HMS smoke for

summer 2006-2015. From Kaulfus et al. 2017 Figure 2.
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Introduction

• Current methods present challenges for continuous smoke 
detection and monitoring

• In-situ monitoring
• Temporal, spatial, and tracer limitations

• Remote sensing
• Polar orbiting, once-daily overpass
• Manual or computational intensive multispectral analysis
• Large data volumes
• Multiple class multispectral classification



Objectives

• Deploy a smoke detection model using machine learning on 
satellite remote sensing observations

• Leverage observations from the new generation of geostationary 
satellite

• High spatial and temporal resolutions over large domains

• Alternative to multispectral analysis
• Eliminate time consuming, subjective manual analysis



Truth Dataset

• Geostationary Operational Environmental 
Satellite 16 shortwave reflectance data

• Bands 1-6 (0.47, 0.64, 0.86, 1.37, 1.6 and 2.2 μm)
• Access L1B radiance data from AWS
• Convert to reflectance
• Spatially resample to 1km

• National Oceanic and Atmospheric 
Administration (NOAA) Hazard Mapping 
System (HMS) smoke analysis

• Satellite based operational daily analysis of smoke 
extent over the US and surrounding areas

• Manual quality controlled by subject matter expert 
to correctly match smoke extent in GOES 16 
image

GOES 16 band 1 radiance with nearest in time HMS

shapefiles (magenta and purple)
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Truth Dataset

• Analyze 122 scenes containing smoke
• 962,691 smoke pixels

• Over low and high background reflectances (land and ocean)
• Low and high optical thicknesses
• Full range of sun angles 

• Contain relevant classes to discriminate smoke from including
• Snow and ice
• Clouds
• Dust

• 60% - 20% - 20% distribution of smoke pixels between training, 
validation and testing datasets



Model Architecture

• Apply a pixel based Convolutional Neural Network (CNN)
• Input (N*2)*(N*2) neighborhood of reflectance values surrounding a 

center pixel (sample)
• 3 convolutional layers 
• Each convolutional layer followed by max-pooling layer
• Convolutional outputs are flattened into vectors

7 
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Model Architecture
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Model Architecture

• Apply a pixel based Convolutional Neural Network (CNN)
• Input (N*2)*(N*2) neighborhood of reflectance values surrounding a 

center pixel (sample)
• 3 convolutional layers 
• Each followed by max-pooling layer
• Convolutional outputs are flattened into vectors
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Model Architecture

• Apply a pixel based Convolutional Neural Network (CNN)
• Input (N*2)*(N*2) neighborhood of reflectance values surrounding a 

center pixel (sample)
• 3 convolutional layers 
• Each followed by max-pooling layer
• Convolutional outputs are flattened into vectors
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Model Architecture

• Apply a pixel based Convolutional Neural Network (CNN)
• 4 fully connected layers with activation function calculation g(Wx + b)

• x is the flattened input vector
• W is the weight matrix
• b is the bias vector

• Dropout for each fully connected layer



Model Architecture

• Apply a pixel based Convolutional Neural Network (CNN)
• 4 fully connected layers with activation function calculation g(Wx + b)

• x is the flattened input vector
• W is the weight matrix
• b is the bias vector

• Dropout randomly for each fully connected layer

7 
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Model Architecture

• The model outputs the probability, ranging from 0 to 1, that a 
pixel is smoke determined by a sigmoid function

• p > 0.5 threshold applied to define smoke 

1 
p(x) 



Neighborhood Selection

• Best neighborhood size (N) 
determined by iterating model 
development and testing for 
increasing N

• All other parameters including 
data, learning rate and model 
hyper-parameters are held 
constant

• Best model selected when 
validation loss did not improve 
for 20 epochs
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Development Testing 

• The F1 Scores, or the harmonic mean of Precision and Recall, 
for N=5,7,9 is comparable
• Trade-off between quality and quantity of smoke predictions

• Best model has low false positive detection rate which drives 
high precision
• Prefer conservative identification over incorrect classification

• Accuracy artifact of large number of True Negatives

N Precision Recall F1-Score Accuracy

1 0.654 0.328 0.437 0.897

3 0.650 0.384 0.483 0.900

5 0.724 0.449 0.554 0.912

7 0.835 0.419 0.558 0.919

9 0.639 0.498 0.560 0.905

TP 
Precision= TP + FP 

TP 
Recall = TP + FN 

TP+TN 
Accuracy = TP + TN + TP + FN 

Precision * Recall 
Fl Score = 2 * Precision + Recall 



Results

• Model updated to account for variation in solar zenith angle
• The training and testing datasets for the updated model differ from 

that used for the initial development 
• Results are comparable between the initial and updated models

• Better predictive capability of smoke over water
• Compared to land, the relative decrease in true negatives over water 

drives a slight decrease in accuracy 

N=7 Precision Recall F1-Score Accuracy

Dev. 0.835 0.419 0.558 0.919

All 0.736 0.453 0.561 0.923

Land 0.631 0.383 0.476 0.928

Water 0.923 0.585 0.717 0.900



2 May 2018  - Southern Florida

• Smoke identified over both 
land and ocean

• Model identifies well defined 
plumes for scenes with 
absence of complex features

• Probabilities resemble 
visually observed optical 
thickness

• Predictions closer 
resemblance to quality 
controlled shapefiles

GOES 16 pseudo-RGB with contoured model predictions (shading), HMS shapefiles

(magenta and purple), and subject matter quality controlled shapefile (blue).



24 March 2018  - Southern Florida

• Distinguishable from 
chlorophyll commonly found 
in coastal settings

• Discriminate smoke from fair 
weather cumulus cloud

• Spectral information for other 
classes not provided to the 
model
Precision Recall F1-Score Accuracy

All 0.744 0.604 0.666 0.948

Land 0.847 0.244 0.379 0.976

Water 0.742 0.623 0.677 0.943

GOES 16 pseudo-RGB (left) with shaded contoured model predictions (right).



11 June 2017 - Southern Rocky Mts. United States

• Successfully discriminates 
land surface snow/ice from 
smoke

• Over snow capped mountains 
for this case

• Detection challenges for 
optically thin smoke over arid 
regions

Precision Recall F1-Score Accuracy

All 0.848 0.318 0.462 0.977

Land 0.848 0.319 0.463 0.977

Water N/A N/A N/A 0.984

GOES 16 pseudo-RGB (left) with shaded contoured model predictions (right).



9 October 2017 - Central California

• Large and small plumes
• Identification over both land 

and ocean
• Coastal stratus clouds

Precision Recall F1-Score Accuracy

All 0.970 0.919 0.944 0.961

Land 0.904 0.754 0.823 0.920

Water 0.986 0.965 0.975 0.980

GOES 16 pseudo-RGB (left) with shaded contoured model predictions (right).



20 May 2018  - Southern Arizona

• Smoke not detected at very 
low sun angles
• Compounded by low optical 

thickness over relatively high 
reflective surface

• Probability of being smoke is 
low for few pixels that are 
identified

Precision Recall F1-Score Accuracy

All 0.995 0.093 0.171 0.823

Land 0.995 0.093 0.171 0.822

Water 0.923 0.585 0.717 1.000

GOES 16 pseudo-RGB (left) with shaded contoured model predictions (right).



14 April 2018 - Southern Rocky Mts. United States

• Overprediction of plume 
extent

• Artifact of large (N=7) 
neighborhood size

• Non-zero floor to number of 
false positives

Precision Recall F1-Score Accuracy

All 0.830 0.738 0.781 0.981

Land 0.830 0.738 0.781 0.981

Water N/A N/A N/A 0.993

GOES 16 pseudo-RGB (left) with shaded contoured model predictions (right).



17 April 2018 - Southern Rocky Mts. United States

• Other atmospheric aerosols 
not classified as smoke

• Large dust storm case
• Represents a major source of 

aerosols in the atmosphere
• Expected over regions where 

smoke is also common

Precision Recall F1-Score Accuracy

All N/A N/A N/A 0.996

Land N/A N/A N/A 0.996

Water N/A N/A N/A N/A GOES 16 pseudo-RGB (left) with shaded contoured model predictions (right).



Operational Capabilities

• Currently testing new deployment in operational environment
• Anticipate operational October 2019

• Fully deployed in the cloud using Amazon S3 and Cloud 
Computing Services

• End-to-end prediction and visualization pipeline
• Model prediction available ~15 min after data availability

• Preprocessing ~10 min
• Prediction and Postprocessing ~5min

• Full disk GOES observation available ~10 min intervals





Operational Capabilities - Postprocessing

• Spatial grouping of predicted 
pixels to define plumes

• Convert predicted pixels to 
bitmap image

• Blurring to smoothen edges
• Contour blurred image to group 

smoke pixels into plumes
• Plumes visualized and geojson 

representation of plume extents 
available for download in the 
Phenomena Portal 
(http://phenomena.surge.sh)

http://phenomena.surge.sh


Summary

• Developed end-to-end machine learning smoke detection 
pipeline for next-generation of geostationary satellites

• Well curated smoke extent dataset
• Scalable smoke detection deep learning model, requiring only smoke 

information, and capable of detecting smoke with:
• Varying optical thicknesses
• Over low and high reflectance background surfaces
• Discriminates from features with spectral similarities 

• Fully automated operational deployment of model in development
• Plume visualization and extent data accessible in online platform 



Future work

• Expand the training data to account for identified weaknesses
• Low sun angles
• Thin smoke over arid regions
• Thin clouds

• Refinement of the machine learning model
• Confirmation of N=7 as best performing model

• Explore trade-off between neighborhood size and prediction capabilities

• Stepwise band selection considering all 16 GOES bands
• Robust model validation

• Band exclusion to identify contribution to feature learning

• Performance assessment for operational improvements



Thank you!

mr0051@uah.edu

aaron.kaulfus@nsstc.uah.edu


